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Abstract

In 2003 and 2013, the World Health Organization convened informal consultations on 

characterization and quality aspects of vaccines based on live virus vectors. In the resulting 
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reports, one of several issues raised for future study was the potential for recombination of virus-

vectored vaccines with wild type pathogenic virus strains. This paper presents an assessment of 

this issue formulated by the Brighton Collaboration.

To provide an appropriate context for understanding the potential for recombination of virus-

vectored vaccines, we review briefly the current status of virus vectored vaccines, mechanisms of 

recombination between viruses, experience with recombination involving live attenuated vaccines 

in the field, and concerns raised previously in the literature regarding recombination of virus-

vectored vaccines with wild type virus strains. We then present a discussion of the major variables 

that could influence recombination between a virus-vectored vaccine and circulating wild type 

virus and the consequences of such recombination, including intrinsic recombination properties of 

the parent virus used as a vector; sequence relatedness of vector and wild virus; virus host range, 

pathogenesis and transmission; replication competency of vector in target host; mechanism of 

vector attenuation; additional factors potentially affecting virulence; and circulation of multiple 

recombinant vectors in the same target population. Finally, we present some guiding principles for 

vector design and testing intended to anticipate and mitigate the potential for and consequences of 

recombination of virus-vectored vaccines with wild type pathogenic virus strains.

Preface

The Brighton Collaboration is a global, non-profit, scientifically independent, largely 

volunteer research network created for the purpose of providing reliable, high quality 

international information and guidelines relevant to vaccine safety. One of many working 

groups within the Brighton Collaboration is the Viral Vector Vaccines Safety Working Group 

(V3SWG) that was formed to explore safety issues relevant to virus-vectored vaccines [1].

In 2003, the World Health Organization (WHO) convened an informal consultation on 

characterization and quality aspects of vaccines based on live virus vectors [2]. One section 

of the 2003 report reviewed “regulatory issues for live viral-vectored vaccines”, including 

input from regulators representing the European Union, the USA (specifically the Center for 

Biologics Evaluation and Research (CBER), a unit within the Food and Drug administration 

(FDA)), China, and Health Canada. Among the issues raised by the Center for Biologics 

Evaluation and Research, U.S. Food and Drug Administration (CBER/FDA) was:

Recombination of a live virus-vectored vaccine with a circulating or reactivated 

latent virus could theoretically generate a more pathogenic strain. This would be 

less of an issue for vectors that share little homology with circulating/latent viruses. 

The risk of recombination should be studied if possible in a non-clinical model 

system, but should also be considered in clinical study designs.

Recombination was not explored further in the 2003 consultation, but was listed in among 

the “Recommendations to WHO and priorities for future work” as one of several “issues of 

critical importance to be investigated further”, specifically, “Potential of recombination with 

wild type pathogenic strains: Vector – circulation virus could create a more pathogenic 

strain; this issue should be addressed in vitro or in animal studies”.
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In 2013, WHO convened an additional informal consultation which reinforced concerns 

regarding recombination within the vaccine recipient [3]. Specifically, the report from this 

consultation states that “guidelines for characterization of the viral vector based vaccines 

have been harmonized and require the following” [among others]:

Demonstration of stability of insert/transgene by PCR, expression, passage in vitro 
and/or in vivo, as well as stability of the attenuated phenotype, i.e., investigate the 

potential for reversion, recombination or replication in the vaccine recipient

The U.S. Food and Drug Administration and the European Medicines Agency have 

published general guidance for use of recombinant virus-vectored vaccines [4;5]. The 

following report specifically explores the issue of potential recombination between virus-

vectored vaccines and wild type pathogenic strains of virus. Our intent is not to conduct an 

exhaustive review of literature, but rather to provide some salient examples to guide 

consideration of issues relevant to the topic.

Background

Virus-vectored vaccines

Virus-vectored vaccines are laboratory-generated, chimeric viruses that are based upon 

replicating (“live”) or non-replicating virus vectors into which have been spliced genes 

expressing antigenic proteins for a target pathogen. A live virus-vectored vaccine is 

biologically active and produces virus progeny in the vaccinated host but may be attenuated 

for pathogenicity either because of mutations in the vector, because of the chimeric nature of 

the vaccine itself, because the vector is used in a heterologous host, or due to a combination 

of these factors. A non-replicating virus-vectored vaccine is so severely attenuated that is 

cannot undergo a complete replication cycle in infected cells. Administration of the chimeric 

virus-vectored vaccine results in expression of antigen(s) of the target pathogen and 

induction of an adaptive and possibly protective immune response. At the time of this 

writing, only two virus-vectored vaccines have been approved for human use, specifically 

Imojev® [6] and Dengvaxia® [7–9]. Imojev® is marketed in Australia and Thailand for 

immunization against Japanese encephalitis virus infection. Dengvaxia® is approved in 

Mexico, the Philippines and Brazil for immunization against dengue fever. Both vaccines are 

based on the live yellow fever vaccine virus vector generically known as ChimeriVax [10]. 

In Imojev® and Dengvaxia®, the genes for the yellow fever virus virion structural proteins 

M and E have been replaced with the homologous genes from Japanese encephalitis virus or 

dengue virus respectively. Because Japanese encephalitis virus, dengue virus and yellow 

fever virus are all flaviviruses, these particular chimeras represent relatively subtle 

exchanges of antigens among closely related viruses. Numerous other virus-vectored 

vaccines using a wide range of vectors and targeting a variety of different pathogens are at 

various stages of research and development. Although currently the number of virus-

vectored vaccines available for human use is small, a variety of viral-vectored vaccines are 

available commercially for use in veterinary practice [11], demonstrating the promise and 

likely future use of viral-vectored vaccines in humans.
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Virus recombination

Recombination describes a process by which nucleic acid sequences from two different 

parental viruses are exchanged so that the progeny contain sequences derived from both 

parents. Both RNA and DNA viruses may undergo recombination when two related genomic 

variants of a virus co-infect a cell. In viral systems there are three different mechanisms of 

recombination, dictated by the structures of the viral genomes. For DNA viruses, 

recombination occurs by the physical breakage and rejoining of parental DNA molecules 

through regions of sequence homology, in a fashion similar or identical to the same process 

in bacteria or higher organisms. For RNA viruses containing segmented genomes, gene 

exchange occurs primarily through reassortment of individual parental genome segments 

into progeny viruses, however intra, genic recombination has also been reported for the 

segmented orthomyxoviruses, reoviruses and bunyaviruses [12–16]. Recombination has 

been observed in several single-stranded RNA (ssRNA) virus families representing both 

positive and negative sense genomes both in the laboratory and in the wild; picornaviruses, 

coronaviruses, togaviruses and retroviruses, all with positive sense ssRNA genomes, display 

relatively efficient recombination [17–31]. The frequency of recombination among negative 

sense RNA viruses (excluding reassortment of segmented genomes) seems to be relatively 

low [31]. Recombination in RNA viruses, including retroviruses, is thought to occur during 

replication via "copy choice", namely switching RNA templates during replication with the 

result that the newly synthesized genome contains sequences from two different parental 

molecules [32;33].

While recombination clearly requires coinfection of a cell with two different viruses, the 

circumstances leading to such a coinfection in vivo are not clearly understood. Coinfection 

could theoretically result from infection with a heterogeneous population of viruses, by 

simultaneous or overlapping serial infections with different viruses, or by infection of an 

individual harboring a persistent, latent or reactivated infection with a different virus. 

Nevertheless, recombination among viruses in the human population clearly occurs as 

exemplified by a recent study describing interclade recombinants of varicella zoster virus 

[34].

Vaccine viruses in the wild

Although experience with virus-vectored vaccines in humans is limited, perspective on the 

issue of recombination between virus-vectored vaccines and wild type viruses can be 

informed by experience with traditional live, attenuated human virus vaccines and virus-

vectored veterinary vaccines. Vaccine viruses may establish a long-term reservoir in the 

wild, and recombination between attenuated vaccine strains and circulating wild type viruses 

or even between two different live attenuated vaccine strains has been documented. 

Specifically, evidence exists that vaccinia virus used as vaccine during the smallpox 

eradication campaign in Brazil has established a durable reservoir in the wild and is the 

cause of numerous cowpox-like infections in cattle and humans [35]. Likewise, the bovine 

herpesvirus vaccine may establish a latent reservoir in vaccinated animals which, through 

reactivation, may spread to other animals [36]. Numerous examples document probable 

recombination between live attenuated vaccine viruses and wild viruses. Phylogenetic 

analysis revealed recombination between wild, circulating strains of Newcastle disease virus 
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(NDV), an avian paramyxovirus, and attenuated NDV vaccine strains [37]. Attenuated 

viruses contained in the oral poliovirus vaccine frequently recombine with related 

indigenous human enterovirus strains to produce circulating vaccine-derived polioviruses 

(cVDPV), which can cause paralytic disease [38]. A reassortant Rift Valley Fever virus 

strain containing both wild type virus-derived and vaccine virus-derived genomic segments 

was isolated from a patient who received a needle stick injury while vaccinating sheep [39]. 

Analysis of two independently isolated disease strains of the pestivirus bovine viral diarrhea 

virus (BVDV) demonstrated that these strains arose via both homologous and non-

homologous recombination between a persistent BVDV strain and a vaccine strain, resulting 

in evolution of strains with enhanced pathogenicity relative to the parental strains [40]. 

Analysis of a strain of the poxvirus myxoma, originally isolated from a wild rabbit, suggests 

that it resulted from a recombination between a wild myxoma strain and a vaccine strain 

[41]. Genome analysis of a disease strain of porcine reproductive and respiratory syndrome 

virus (PRRSV), an arterivirus, demonstrated that it is a recombinant between an attenuated 

PRRSV vaccine strain and a field strain [42]. Additionally, recombination between 

independently derived attenuated avian herpesvirus vaccine strains can give rise to 

circulating pathogenic recombinant viruses [43]. Lastly and most extraordinarily, evidence 

exists that the retroviral disease reticuloendotheliosis was introduced into avian populations 

via contamination during development of fowlpox (a poxvirus) and Marek’s disease (a 

herpesvirus) vaccines, and now circulates in the wild as an integrated provirus in some 

fowlpoxvirus genomes [44]. All of these examples attest to the potential for genetic 

interaction between vaccine viruses and viruses in the wild. By contrast, it is noteworthy that 

more than 100 million doses of poxvirus-vectored recombinant rabies virus vaccine has been 

distributed in the wild in the United States, Eurasia and Western Europe resulting in 

reproducible reduction or elimination of wild rabies where applied and with no reports of 

recombination with wild type virus strains, attesting to the utility of recombinant vectored 

vaccines [45]. Furthermore, a wide variety of viral-vectored recombinant vaccines have been 

routinely used in veterinary practice for well over a decade with no recorded evidence of 

problems resulting from recombination with wild viruses [11]. Thus, while the occurrence of 

a recombination event is likely to be rare, the unanticipated consequences of such an event 

must be considered by developers and regulators alike.

Recombination between virus vaccine vectors and wild type virus strains

Although as described above, recombination has occurred between traditional live attenuated 

vaccine viruses and wild type viruses, to date there are no examples of recombination 

between virus vectored vaccine strains and wild type virus strains outside of the laboratory. 

However, on at least two separate occasions the possibility of recombination between viral 

vaccine vectors and wild type virus strains has been debated in the literature. One debate 

related to the development of ChimeriVax based vaccines [46–48] and one related to the 

development of Newcastle disease virus as a vector [49;50]. These debates defined some of 

the central concepts surrounding the issue of recombination between viral vaccine vectors 

and wild type virus strains. In the case of the ChimeriVax debate, most of the issues were 

ultimately addressed experimentally, thus providing a template for safety assessment of viral 

vaccine vectors, discussed in more detail at the end of this document.
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In summary, it is wholly feasible that virus-vectored vaccines could undergo recombination 

with naturally occurring viruses to produce hybrid viruses that could theoretically have 

undesirable properties affecting transmission or virulence. Especially given the entirely 

novel nature of chimeric viruses, prudence dictates that this possibility be taken into account 

in the design of virus-vectored vaccines. While medicinal regulatory decisions are made on 

the basis of risk and benefit considerations, the approach that has primarily been taken by 

regulators towards genetically-modified organisms has been that of the precautionary 

principle. Both types of regulatory decision-making (risk/benefit; precautionary principle) 

implore prudence and caution on the part of developers and the requirement for provision of 

evidence to support decision-making.

A framework for consideration of recombination between virus-vectored 

vaccines and circulating wild type viruses

The subject of recombination between virus-vectored vaccines and circulating wild type 

viruses comprises two overlapping sub-topics, namely, the probability that recombination 

will take place and the possible outcomes of recombination. The numerous variables 

affecting these issues are probably impossible to quantify accurately given existing tools and 

knowledge. However, the major variables that could influence recombination between a 

virus-vectored vaccine and circulating wild type virus and the consequences of such 

recombination can be identified and evaluated at least qualitatively during vaccine 

development. These major variables are:

1. Intrinsic recombination properties of the parent virus used as a vector

2. Sequence relatedness of vector and wild virus

3. Host range, pathogenesis and transmission

4. Replication competency of vector in target host

5. Mechanism of vector attenuation

6. Additional factors potentially affecting virulence

7. Circulation of multiple recombinant vectors in the same target population

Each of these variables is considered separately in the following paragraphs.

Intrinsic recombination properties of the parental viruses

As noted above, different virus families are associated with different intrinsic frequencies of 

recombination, and these intrinsic properties will affect the probability that recombination 

will take place. Generally, DNA viruses are subject to relatively high frequencies of 

recombination. Although RNA viruses generally display lower recombination frequencies 

compared to DNA viruses, retroviruses and some positive stranded RNA viruses 

(picornaviruses, coronaviruses, togaviruses, noroviruses), readily recombine. Other positive 

stranded RNA viruses recombine only inefficiently, and while recombination among 

negative stranded RNA viruses can be demonstrated on an evolutionary scale, the 

frequencies are sufficiently low as to make recombination under laboratory conditions 
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difficult to detect. Segmented viruses display extremely high rates of reassortment, and 

concern has been expressed that live attenuated influenza vaccines might readily reassort 

with circulating wild type strains [51]. One must assume that vectors based on virus families 

with segmented genomes or families prone to high recombination rates would also be most 

prone to recombination with related wild type viruses should the opportunity for 

recombination arise. For viruses of any given family, the intrinsic rates of recombination 

both in cell culture and in laboratory animals can often be determined experimentally, and 

recombination among related viruses in the wild can sometimes be deduced based on 

phylogenetic analyses. The intrinsic recombination properties of any given virus should be 

taken into account during vaccine vector development.

Sequence relatedness of vector and wild virus

For both DNA and RNA viruses, the majority of observed recombination events occur 

through regions of nucleic acid sequence homology between parental genomes. Thus, any 

sequence alterations to a vector that reduce homology with the wild type virus should 

theoretically reduce the probability of recombination between vector and wild type virus. 

Viruses can be attenuated by changing the genome sequence to substitute less common 

codons [52]. Sequences can be changed in silent positions such that the original amino acid 

sequence of the gene is preserved, but multiple substitutions of less frequently used codons, 

“codon deoptimization”, results in loss of virulence. Attenuation can also be achieved by the 

introduction of many uncommon combinations of pairs of codons, thus changing the “codon 

pair bias” [53]. Vectors engineered in this fashion should theoretically have a reduced 

frequency of recombination with wild type homologs. Alternatively, vectors intended for 

human use which are based on naturally occurring non-mammalian viruses, for example the 

use of canarypox virus as an HIV vaccine vector [54], are sufficiently divergent in sequence 

homology from mammalian viruses such that the probability of recombination between the 

vector and a mammalian virus in the vaccinated host should be lowered. Lastly, gross 

alterations in gene arrangement of a vector could suppress productive recombination with a 

wild type virus homolog [55–57]. Notably, non-homologous recombination among viruses 

does occur, albeit at a relatively low frequency, and manipulations to influence homologous 

recombination will theoretically not affect non-homologous recombination events. 

Furthermore, sequence homology is irrelevant in reassortment of genome segments in 

segmented viruses.

Host range, pathogenesis and transmission

The probability of recombination between two viruses should be directly proportional to the 

probability that a cell will be co-infected by the two parental viruses under consideration. 

The probability of co-infection, in turn, may theoretically be influenced by virus host range, 

pathogenesis (i.e. whether infections are normally acute, persistent, chronic or latent) and 

transmission. Considering the influence of host range, use of an avipoxvirus vector in 

humans or non-avian vertebrates should limit the potential for recombination of the vector 

with wild avipoxviruses [54]. Likewise, use of the avian Newcastle disease virus (NDV) as a 

vector in humans would present minimal opportunity for co-infection with the wild type 

avian virus, thus limiting the opportunity for recombination [49]. By contrast, use of a 

human adenovirus as a vaccine vector carries the clear potential for genetic interaction 
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between the vector and circulating human adenoviruses. Considering the influence of 

pathogenesis, one would expect that a virus that in the wild causes a latent infection in the 

target population would provide a greater opportunity for recombination compared with a 

virus that results in an acute infection. As a specific example, herpes viruses have been 

proposed as vaccine vectors [58]. Because a large fraction of the human population carries 

several different herpes viruses in a latent state, these latent wild type genomes could 

theoretically provide stable, persistent populations of virus genomes in a target population 

which could recombine with vaccine vectors. By comparison, if the vector parent usually 

undergoes an acute infection such as in the flavivirus yellow fever, the opportunities for 

recombination would be relatively rare. Transmission mechanism could also theoretically 

affect the probability of recombination between a viral vaccine vector and a circulating 

virus. For example, different species of arthropod-borne flaviviruses exhibit differences in 

observable recombination frequencies in nature attributable to differences in mechanism of 

vectoring by ticks and mosquitoes and by differences in both host and vector ecology among 

different flaviviruses [30].

Replication competency of vector in target host

The probability of recombination between a virus-vectored vaccine and a wild virus should 

be proportional to the virus load in a vaccinated individual, and thus limited by the 

replication competency of the vectored vaccine. Virtually all vaccine vectors are either 

defective for virus replication or naturally or artificially attenuated for pathogenicity in their 

target populations, and attenuation sometimes equates to reduced virus replication, hence 

reduced virus load and reduced opportunity for recombination. “Naturally” attenuated 

vectors comprise those in which a virus specific for one animal species is used as a vector 

for vaccination of another normally non-permissive species. Examples include canarypox 

virus and Newcastle disease virus engineered for use in humans as described above [49;59]. 

Canarypox in particular undergoes an abortive infection in non-avian cells, virtually 

nullifying the opportunity for recombination [60]. Vectors may be artificially attenuated 

using classic methods of serial passage in vitro or more modern methods involving 

engineered gene deletion or rearrangement. Modified vaccinia Ankara provides an example 

of a poxvirus vector attenuated by serial passage [61], the MRKAd5 HIV-1 clade B 

gag/pol/nef vaccine provides an example of an adenovirus vector artificially attenuated by 

deletion of the essential viral E1 regulatory region [62], and vesicular stomatitis virus 

vectors have been attenuated by rearrangement of gene order in the viral genome [57].

Mechanism of attenuation

The specific mechanism of attenuation impacts the consequences of recombination between 

a vaccine vector and a wild type virus. Specifically, if attenuation is genetically linked to 

transgene expression, reversion to virulence seems unlikely. For example, as noted above, in 

an adenovirus vector the transgene encoding an immunizing antigen may be inserted into a 

deleted E1A region [62] so that any recombination event that restores virulence to the vector 

also deletes the transgene and conversely transfer of the transgene to a wild type virus also 

transfers attenuation. Thus, theoretically, no recombinant should be more virulent than the 

vaccine vector itself. By contrast, in an attenuated vaccinia vector (MVA) multiple genes are 

mutated or deleted to confer attenuation, and the transgene is expressed only from one site 

Condit et al. Page 8

Vaccine. Author manuscript; available in PMC 2017 December 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[61]. Recombination with a wild orthopox virus (cowpox virus, vaccinia virus or monkeypox 

virus) could in theory either “repair” some virulence mutations or transfer the transgene into 

a wild type virus background, generating a recombinant with improved replication properties 

relative to the original vaccine vector and also leaving the transgene expression intact.

Additional factors potentially affecting virulence

Vector designs have been proposed that incorporate expression of immune modulatory 

molecules, for example interleukins, to stimulate or otherwise regulate the immunogenicity 

of the recombinant vaccine [63]. However, in some cases these genes may act as virulence 

factors. For example, in a model poxvirus system, expression of interleukin-4 (IL-4) from 

ectromelia virus (a natural pathogen of mice; mousepox virus) enhanced the pathogenicity 

of the virus and conferred resistance of the recombinant virus to pre-existing immunity in 

infected animals [63;64]. Theoretically, recombination of a vector expressing such a 

virulence factor with a wild type virus could result in production of a wild virus with 

increased virulence.

Circulation of several recombinant vectors in the same target population

Although hypothetical, the possibility of recombination between two live recombinant 

vectors administered in the same population deserves some consideration. Two examples are 

provided. Attenuated vaccinia Tiantan [65;66] used in China for smallpox eradication is 

being assessed as a replication-competent vector for both HIV-1 [67]and H5N1 [68] 

vaccines and in its replication-defective form for hepatitis C vaccine [69]. Similarly, 

replication-competent adenovirus serotype 4 (Ad4) has been tested in humans as a vector for 

H5N1 [70] HIV and anthrax. Ad4 and Ad7 cause serious lower respiratory tract disease in 

military recruit training camps. Non-recombinant Ad4 and Ad7 vaccines proved to be 

among the safest vaccines, with more than 10 million military recruits vaccinated without 

serious adverse experience and the military continues to vaccinate recruits today with these 

vaccines [71;72]. The use of two different vaccines based on the same vector in the same 

population creates an opportunity for recombination which could generate a novel virus with 

potentially undesirable properties. A practical example with existing traditional attenuated 

veterinary vaccines is the recombination between two independently derived attenuated 

vaccines for infectious laryngotracheitis virus, a herpesvirus affecting commercial poultry, 

which regenerated a pathogenic wild type virus, cited above under “vaccine viruses in the 

wild” [43].

A template for investigations of recombination between live virus-vectored 

vaccines and wild type virus: experience with the ChimeriVax platform

The experience with ChimeriVax may serve as a template for analysis of the role of 

recombination in the development of vectored vaccines.

As introduced above, ChimeriVax is a live, attenuated recombinant virus platform 

constructed from the live attenuated yellow fever (YF) vaccine strain 17D in which the 

envelope protein genes of YF 17D are replaced with the corresponding genes of another 
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flavivirus [73]. The ChimeriVax platform has been used to develop live vaccines for dengue 

viruses (DENV), West Nile virus (WNV) and Japanese encephalitis virus (JEV).

Concerns have been raised that recombination between ChimeriVax vectored vaccines and 

wild type flaviviruses could generate a novel virus with enhanced pathogenicity [47;48]. 

These concerns have been addressed through a variety of studies including a review of 

evidence for inter- and intra-typic recombination among flaviviruses in the wild [74], 

laboratory tests for recombination among flaviviruses [74;75], and deliberate construction 

and testing of theoretical recombinants containing a heterologous envelope vaccine antigen 

in a wild-type vector background [76;77]. The results demonstrated intra-typic 

recombination among flaviviruses that occurred on an evolutionary scale in the wild and 

little or no recombination in cell culture, and that substitution of heterologous envelope 

proteins into a virulent flavivirus backbone results in a virus with properties of attenuation 

matching those of the attenuated vaccine vector.

For analysis of an existing vector or development of a new vector, new or existing studies 

such as those done for ChimeriVax, along with a thorough description of the distribution and 

host range of both the vaccine and the wild strains should effectively address the 

fundamentals influencing recombination between virus-vectored vaccines and wild strains as 

recommended by WHO and outlined in this document.

Guiding principles for vector design and testing

Consistent with the recommendations of the U.S. Food and Drug Administration and the 

European Medicines Agency [4;5], the potential for recombination with circulating wild-

type viruses should be addressed during development and testing of virus-vectored vaccines.

Rather than attempting to prepare specific guidelines for each vector, the Brighton 

Collaboration recommends that developers take the responsibility for assessing the potential 

for recombination between their virus-vectored vaccine and wild-type circulating viruses, 

taking into account the issues described above. Specifically:

1. Consider the evidence that members of the virus genus do or do not 

undergo recombination in the wild or under experimental conditions, for 

example in an animal model or in cell culture.

2. Given the vector design and mode of delivery, assess the magnitude of the 

opportunity for recombination in a clinical scenario.

3. Given the vector design, evaluate the probability that a recombination 

event with a wild virus could lead to a virus of increased pathogenicity. 

Consider the potential mechanisms whereby this could happen, and cite or 

conduct laboratory studies to evaluate those mechanisms.

4. Consider vector designs that could further reduce the probability of a 

recombination event, and enhance safety, while leaving the potency of the 

vector largely intact.
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5. Develop an optimized system for recombination and a strategy for 

detection of recombinants perhaps using current, sensitive assays for 

detection of expected viruses (e.g. PCR or infectivity assays) and new, 

broad methods for detection of novel viruses (e.g. degenerate PCR and 

massively parallel sequencing).

A place already exists for reporting the general conclusions of these investigations in the 

existing Brighton Collaboration templates for description of vectors [78]. The option for 

including a more detailed report can be considered.
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